

PREPARATION AND PROMULGATION OF ELECTRICITY SECTOR CODES

Distribution Code

Work Shop 2

WEDNESDAY JULY 20, 2016

PRESENTER: ASTON STEPHENS

Contents

- 1. Distribution Code Development Approach
- 2. Comparison of Codes
- 3. Distribution Code Migration Process
- 4. Technical Requirements
- 5. Variable Renewable Power Plant Connection
- 6. KEY ISSUES, NEXT STEPS
- 7. TAKEAWAYS

Distribution Code Development Approach

- a. Stakeholders consultations and inputs.
- Recognize need to minimize level of disruption to system operations.
- c. Recognize Existing Agreements and Contracts.
- d. Allow for the increasing penetration of variable renewable resources power plants.
- e. Recognizing potential compliance issues.

Comparison of Distribution Codes

Draft Distribution Code

- Distribution Planning Code (DPC)
- Planning Studies (DPC 3)
- Maintenance Standard (DGC 8)
- Distribution Connection Code (DCC)
- Method of Connection (DCC 2)
- Power Quality Standard (DCC 3)
- Numbering & Nomenclature (DOC 10)
- Distribution Metering Code (DMC)
- Communication & Control (DCC 6)

Proposed Distribution Code

- Long Term Network Planning (DC 3)
- Planning Studies (DC 5)
- Maintenance Standard (DC 8)
- Distribution Connection (DC 10)
- Method of Connection (DC 11)
 - Variable Renewable Power Plant (DC 11.5)
- Power Quality Standard (DC 12)
- Numbering & Nomenclature (DC 16)
- Distribution Metering (DC 18)
- Communication & Control (DC 15)

Distribution Code Migration Process

Draft Distribution Code

Proposed Dispatch Code

- System Control (DOC 7.4)
- Operational Planning (DOC 3)
- Testing & Monitoring (DOC 4)
- Demand Control (DOC 5)
- Operational Communications (DOC 6)
- Safety & Co Ordination (DOC 7)
- Contingency Planning (DOC 8)

- •System Control (DSC 17)
- Operational Planning (DSC 12)
- Testing & Monitoring (DSC 13)
- Demand Control (DSC 14)
- Operational Communications (DCS 15)
- Safety & Co Ordination (DSC 16)
- Contingency Planning (DSC 7)

Technical Requirements

Draft Distribution Code

Frequency Limits		
Grid Frequency	50Hz ± 0.2 Hz	
Embedded Generation	49.5 Hz to 50.5 Hz	

Bus Voltages % of Nominal	
Normal Operation	± 5%
Contingency Condition	± 10%

Proposed Distribution Code

Frequency Limits	
Grid Frequency	50Hz ± 0.2 Hz
Embedded Generation	49.5 Hz to 50.5 Hz

Bus Voltages % of Nominal	
Normal Operation	± 5%
Contingency Condition	± 10%

Technical Requirements Variable Renewable Power Plant (VRPP)

Voltage Support & Criteria

Bus Voltages % of Nominal		
Normal Operation	± 5%	
Contingency Condition	± 10%	

Relay Trip Settings (% of V _{nominal})	Maximum Time to Disconnect
V < 50%	0.16 sec (8 cycles)
50% < V < 88%	2 secs (100 cycles)
110% < V < 120%	1 sec (50 cycles)
V > 120 %	0.16 sec (8 cycles)

Frequency Requirements

Frequency Limits	
VRPP trip if	f < 49.8 Hz or f > 50.2 Hz
VRPP sustained operation	49.5 Hz to 50.5 Hz

Technical Requirements VRRP Connection Conditions

Conditions to be satisfied

- Frequency
- Voltage
- Voltage Flicker
- Harmonic Distortion
- Phase Imbalance & Negative Sequence Handling
- Anti Islanding
- Safety
- Communication and Control Requirements
- Data Requirements & Studies
 - > To include accurate Forecasting

Key Issues & Next Steps

- Complete formatting of the code
- Standardized the definitions in the code
- Fully incorporate JPS's, Interconnection Technical Guidelines, for Distributed Generators into the code
- Working with JPS to harmonize some of the available dataset
- Review some of the definitions used in the proposed code
- Need to get a better understanding from MSET with regards to the approach that it will adopt In developing and executing a long term Distribution Expansion Plan

Takeaways

- The proposed Distribution Code:
 - Does not introduce any new guidelines or operating criteria that will impact the performance of the Distribution System
 - Make accommodations for Renewable Energy generation addition
 - Comply with existing guidelines

THE END