

CARIBBEAN CLEAN ENERGY PROGRAM (CARCEP)

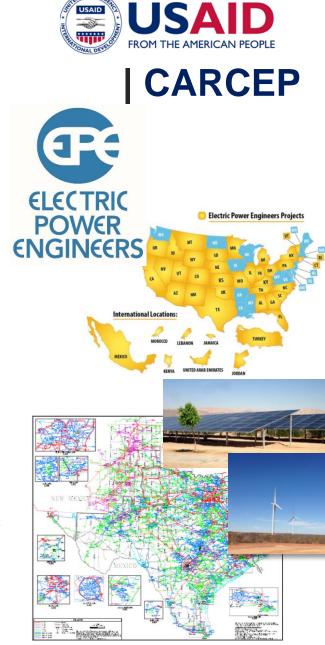
The Grid Codes Supporting Clean/Renewable Energy Policy Initiatives

June 16, 2016

Hala N. Ballouz,

B.Sc., M.Sc. EE TAMU , P.E. **President , Electric Power Engineers, Inc**.

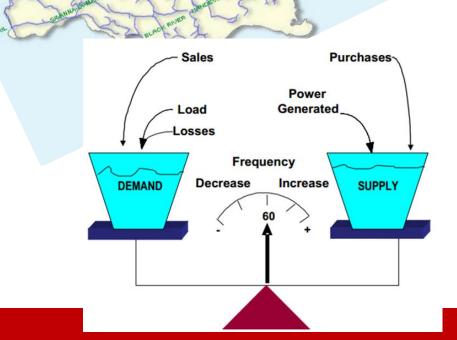
Overview


- Grid Code for Renewable Generation Integration
- Significance of Grid Code for Stakeholders
- Renewable Code Components
 - Technical Requirements
 - Data, Planning & Operation
- Identifying the Requirements
- Holistic Approach
 - Code + Studies, Programs and Services
 - Intelligent (Smart) Grid Examples
- Testing and Compliance Checks
- Standing Committee and Working Groups
- Conclusion

Hala N. Ballouz, P.E.

-Electric Power Engineers, President
-25+ years experience in T&D Consulting
-GridNext. Director, TREIA

Background


- Advisor on renewable energy integration
- Supporting de-bundling of energy markets, grid code & study and energy market analysis
- Clients include independent resource developers, electric T & D utilities, energy traders

Grid Code for Renewable Generation Integration

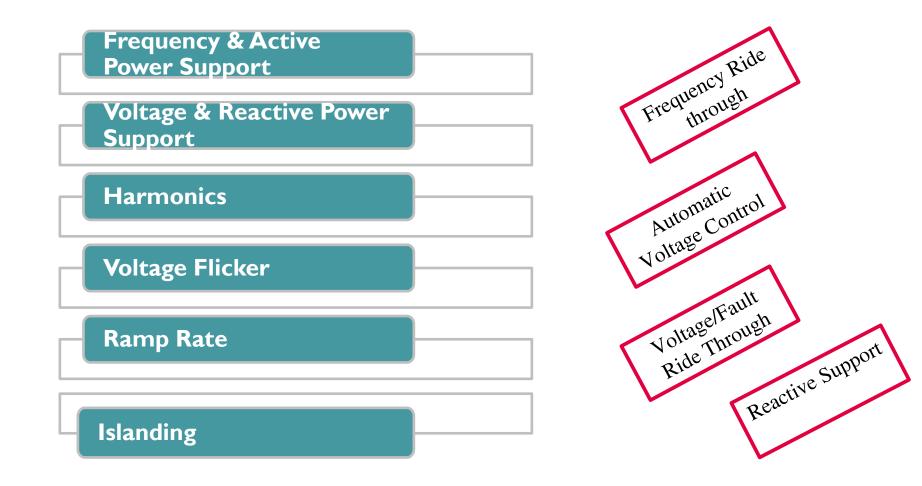
- Grid Codes have been developed over the past 30 years with synchronous machines in mind (traditional fossil fuels oil, gas, coal...)
- New technology and new types of generation, such as inverter type PV and Wind, introduce new challenges on the grid
 - Non-synchronous machines
 - Intermittent resources

Study and lessons learned from experience in operating wind and solar PV have resulted in the development of set of codes to integrate Wind and PV on grids

Significance of Renewable Generation Grid Code for #5 **Stakeholders**

Consumers

Financers


TECHNICAL

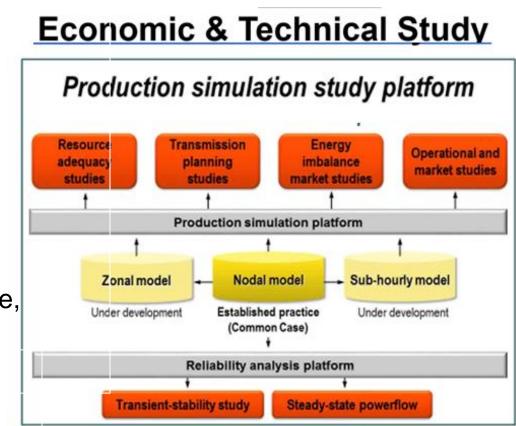
- Grid reliability & protection
- Flexibility in operating the system •
- Enabling the grid to accommodate more capacity •
- Standardization of System Impact Studies & Data ders Planning & Operation Requirements Stakehoners Stakehoners Generation Developers Planners
- •

COMMERCIAL

- Standardization for Evaluation of project bids
- Standardization of agreements for connection •
- Bid comparison made easier and more accurate •
- Certainty for development and financing Renewable projects

Renewable Code Components - I Technical Requirements

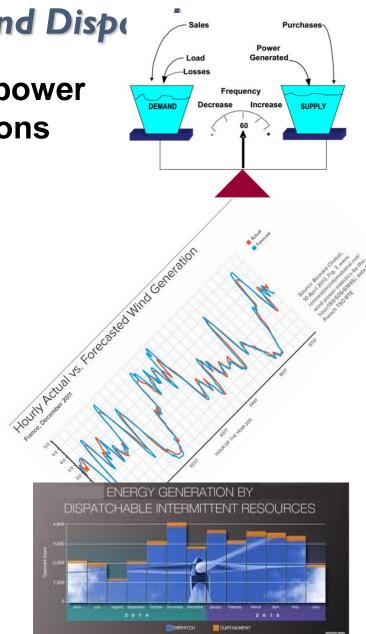
Renewable Code Components - II Data, Operation & Planning OPERATION


- Forecasting
- Constraint economic dispatch
- Testing and commissioning
- Compliance monitoring
- SCADA

PLANNING

- Grid Impact Studies
- Grid support services (reactive, energy storage, etc...)
- Allocation of costs

DATA


- Data collection standardization
- Compliance records

Renewable Code Components – II cont'd Operations - Forecasting and Disp

Forecasting - Integrating renewable power generation into Utility's daily operations

- Accurate renewable power production forecasts are vital to efficient and reliable system operation
- Recommend to use centralized forecasting services to produce short term sub-hourly rolling forecasts (looking 6 hours ahead)
- Integrate into production planning and unit commitment software for constraint economic dispatch

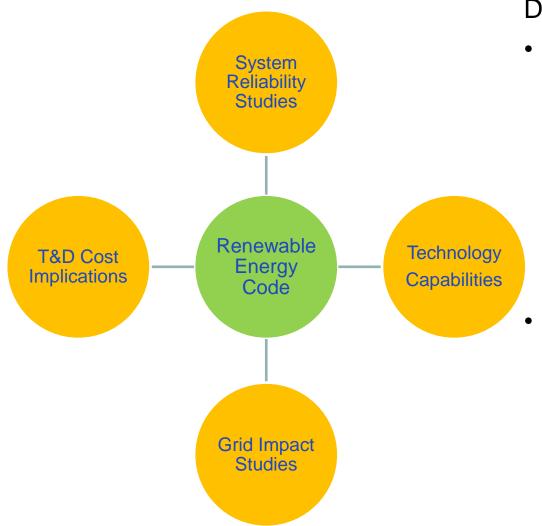
#8

Identifying the Requirements No one-size fits all

Frequency Ride Through Settings Examples

Nominal Temporary Range

		Range	Time
	Azores Islands	50Hz ±1.5%	Continuous
		50Hz ±2% (95% of time)	Continuous
e, in	Canary Islands	49.85Hz - 50.15Hz	Continuous
tings		49.85Hz - 50.25Hz	5 min
t take		47.5Hz - 51Hz	5 min
,	Crete Islands	42.5Hz - 57.5Hz	Continuous
		49Hz - 51Hz (95% of time)	Continuous
nt load under	Pantelleria Islands	47.5Hz - 51.5Hz	Continuous
	French Islands	48Hz - 52Hz	Continuous
		47Hz - 48Hz	3 min
		46Hz - 47Hz	1 min
		44Hz - 46Hz	0.4 sec
		52Hz - 53Hz	5 sec
		1	


For example, in Jamaica, settings of FRT must take into account, among other things, current load shedding for under frequency

Identifying the Requirements Example

European example:

- PV installations before 2011 were required to disconnect at +/- 200 mHz
- As a result on a sunny day 200 mHz deviation in frequency can result in an outage of more than 10 GW in Central Europe, the contingency reserve was only 3 GW.
- **Retrofitting** installed PVs to avoid this issue is a very expensive option. In Germany the costs were estimated at **\$84-229 million**.

Identifying the Right Requirements Inputs and Implications Balance

Decision boundaries:

- If the requirements are too strict, then the cost of producing renewable energy becomes high. Also some technologies cannot comply
- If the requirements are minimal, then the cost of grid reenforcements may be very high, and grid reliability may suffer

Holistic Approach Code + Studies, Programs and Services

CODE + STUDY

- Utility scale generators grid impact is location and size dependent
- Voltage and Frequency support requirements can only be determined by study

DISTRIBUTED ENERGY RESOURCE (DER) PROGRAMS

- Such as Net-metering, Demand Response, Energy Efficiency
- Power Wheeling
- These programs must be restudied frequently to assess impact on grid and cost

ANCILLARY SERVICE MARKET

• This will bring the right technologies to the right location, such as energy storage

Holistic Approach Distributed Resources & Intelligent (Smart) Grid Integration Programs

- Example of Germany:
 - Installed at low voltage levels, many PV installations are of small size \leq 100kW
 - 98% of over 1 million PV installations are connected to low voltage networks;
 - only 15% of PV installations are larger than 1 MW
 - No visibility or controllability for network operators (at distribution or transmission level)
 - Displaces conventional generation during certain hours
- Need for timely interconnection requirements (for utility scale and DG)
- Need to ensure that conventional generation fleet is able to follow net load ramps (including wind and PV) - Studies
- Need for PV Production Forecasting (utility scale and DG)
- Need for Smart Meters and Data Analytics
- Need for SCADA and Controls

Holistic Approach Hawaii Fast DR (FDR) Service example

Bring the cost down by participating in Fast Demand Response

of theorie Company

Look Who's Saving \$1,000s On Their Electric Bill. BYU

Brigham Young University–Hawaii is the newest partner in Hamijan Electric's energy-saving program, Fast DR (Demand Response). Organizations that qualify will receive \$3,000+ in electricity credits per year. To sign up, call \$4-POWER (947-6937) or visit dr.heco.com.

View our new webinar at dr.heco.com to learn about the benefits of Fast DR.

Testing and Compliance Checks

- Compliance checks
 - Engineering Compliance checks during interconnection process
 - Equipment specifications and certifications
- Testing
 - Compliance testing before approval for energization and/or commercial operation
 - Compliance Audits during operation
 - Periodic testing requirements
- Studies
 - Interconnection Studies that the Utility will complete
 - Plant specific studies that may be completed by the developer

Standing Committee & Working Groups

- Industry Codes have significant cost impact on end users and stakeholders
- Codes must continuously grow and adapt to new developments
- Expect Issues to arise as the code gets implemented
- Code Panel should represent all stakeholders and meet once a month
- Any stakeholder should be able to suggest a modification to the code
- Panel should address challenges and generate ideas
- Supplement with informal workshops

- Working groups should be appointed to address issues
- Consultation should be sought in difficult matters which should take into account all stakeholder responses
- Typically the Regulator should have final decision in case of conflict

Conclusion

Approach to Implement Renewable Generation Specific Code in Jamaica

- 1. Draft code using best available information and expertise by August 26 Ensure that code clearly allows study to supplement code.
- 2. Establish Code Committee and Workgroups to meet monthly to refine and further develop the code
- 3. Establish framework of studies necessary to continuously refine code and programs

CARIBBEAN CLEAN ENERGY PROGRAM

Hala N. Ballouz, President, P.E. Electric Power Engineers, Inc.

hballouz@epeconsulting.com

