DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica

Overview

Kingston, 5-6 February 2017 Dr. Viren Ajodhia Dr. Konstantin Petrov

Program outline

- 1. Forms of price control and Role of the X-factor
- 2. Productivity benchmarking techniques
- 3. Multi-dimensional analysis (DEA)
- 4. Using productivity targets

DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica

Part 1: Forms of Price Regulation

Kingston, 5-6 February 2017 Dr. Viren Ajodhia Dr. Konstantin Petrov

Table of Content

- **2.** Major price control models
 - a) Overview
 - b) Rate of return
 - c) Cap regulation
 - d) Sliding scale regulation
 - e) Yardstick competition
 - f) Regulatory formulas
- **3.** Principle design criteria
 - a) Efficiency incentives
 - **b)** Practicability information requirements
 - d) Impact on investment
 - e) Regulatory risk
 - f) Application of regimes in practice

1. Introduction

Why Regulation?

- Competition provides best service to customers in terms of price and quality of service
- Competition not feasible in all segments of the power sector
- Transmission and distribution networks natural monopolies
- Regulation to ensure that network operators:
 - operate efficiently
 - charge fair prices
 - provide adequate quality of supply
- Regulator to balance interests of network owners and network users (producers, suppliers, end-user customers)
- Information asymmetries between companies and regulator

a) Overview

In practice also cases where

- elements of different regimes are applied simultaneously
- different regimes are applied for different services of the same company

a) Overview – Rate-of-Return vs. Cap Regulation

a) Overview – Theory vs. Practice

- Differences between regimes in practice less strong
- Depending on the details of the regulatory regime, differences might only exist in the name of the regime
- Hybrid forms (combinations of regimes) frequently applied in practice
- Almost all regimes require a calculation of the company's cost and price levels

b) Rate of Return Regulation

- Prices / revenues based on operating costs plus "fair" rate of return on capital (cost recovery principle)
- Frequent regulatory reviews (avoid deviation between actual cost and allowed revenue)
- Regulation period either very short or not pre-determined
- Primary objective: limit profits, prevent companies from pricing above costs
- In theory companies free to set prices as long as rate of return is not exceeded, in practice however prices often determined directly by regulator
- Traditional form of regulation (USA)

c) Cap Regulation

c) Price-Cap Regulation

- Sets an upper limit on prices
- Cap set for individual price(s) or set on weighted average price (tariff basket)
- Applies longer regulatory lag (pre-determined regulatory period of 3-5 years)
- Requires explicit productivity increase via price formula (X-factor, company specific)
- Adjustment factor for inflation (consumer price index, retail price index,...)
- Other adjustment factors (changes in input prices, industry-wide productivity growth, network development costs, quality targets)
- Allows retention of efficiency gains
- Decouples partially costs from revenue / price
- Primary objective: limit prices, not profits
- Incentive to increase profits by saving costs may deteriorate quality \rightarrow regulation of quality necessary
- First applied in the UK, now widely applied, particularly for telecommunication and electricity networks

c) Revenue-Cap Regulation

- Ex-ante determination of maximum revenue levels
- Cap fixes upper limit of total revenue or revenue per unit of output
- Requires explicit productivity increase via price formula (X-factor)
- Adjustment factor for inflation (consumer price index, retail price index,...)
- Other adjustment factors (changes in input prices, industry-wide productivity growth, network development costs, quality targets)
- Decision on output levels and prices remains at regulated company so long as revenues do not exceed cap
- Prices not necessarily capped
- Applied in many European countries

c) Revenue-Cap Regulation (the slide is also relevant price-caps)

- Two major forms in practice: building blocks and total cost model (Totex)
- Building blocks
 - implemented as linked (coupled) cap regulation
 - explicit projection of Capex for the upcoming regulatory period
 - separate checks and inclusion of investments
 - formalised efficiency analysis of controllable Opex
- Totex scheme
 - implemented as unlinked (decoupled) cap
 - inclusion of (historic) capital cost into efficiency assessment modelling (total cost analysis)
 - Capex standardisation for benchmarking purposes

d) Sliding Scale Regulation (Profit-, Revenue-Sharing)

- Regulator sets target level of profits / revenues the company is permitted to keep
- If company performs better than this target, gains have to be shared with customers
- If company performs worse than this target, losses are also shared with customers
- Main objective "fair" sharing of profits and risks between company and customer, compromise between cap and rate-of-return regulation
- Sharing usually takes place through adjustment of revenue in the next regulatory period
- Sliding scale is often applied together with cap-regulation
- Typically the regulator sets
 - a target range where no sharing arrangements apply (dead band)
 - a wider range (above/below target) where sharing arrangements apply
 - a maximum and minimum level of the sliding scale scheme

e) Yardstick Competition

- Prices or revenues linked to the costs of a peer group of companies
- Companies not allowed to charge higher prices than the mean of the costs of peer group
- Sometimes yardstick based on the average industry productivity improvement
- Few cases of practical application, no pure model applied

f) Regulatory Formulas (exemplary)

f) Regulatory Formulas (exemplary)

3. Principle Design Criteria

a) Efficiency Incentives

Rate-of-Return	 Low incentive No benefit of cost reductions as return is fixed Costs can be shifted to customers, incentive to increase costs
Revenue-Sharing / Profit-Sharing	 Medium incentives Revenues / profits resulting from cost reductions shared with customers Large sharing rule → incentives close to Rate-of-Return regulation Small sharing rule → incentives close to Cap Regulation
Revenue-Cap	 Medium to strong incentives Profits can be increased by reducing costs as revenues are capped Possibility to increase profits by increased prices and decreased output Includes explicit factor for the anticipated efficiency increase (X-factor)
Price-Cap	 Medium to strong incentives Profits can be increased by reducing costs as prices are capped Possibility to increase profits by increased output Requires explicit productivity increase via formula (X-factor)
Yardstick	 Strong incentives Prices/revenues indexed to average cost/productivity improv. of industry Profits can be increased by reducing costs in relation to other companies

b) Practicability – Information Requirements

Rate-of-Return	 Medium / high information requirements Requires monitoring of revenue and cost data High administration effort
Revenue-Sharing / Profit-Sharing	 Medium information requirements Requires regular and reliable profit / revenue data
Сар	 Information requirements vary with the form of cap regulation (low to medium) It may require explicit cost projections Reduced monitoring of costs
Yardstick	 Comparably lower information requirements Does require a sufficient number of comparative firms whose data can be used to form the yardstick

c) Regulatory Capture and Gaming

Rate-of-Return	 Low threat of gaming, as rate of return can be reset frequently but incentives to keep high costs High threat of capture, as profits depend on frequent reviews Low risk of discretionary intervention as prices are set according to costs
Revenue-Sharing / Profit-Sharing	 Medium threat of gaming, risk of manipulating profits Medium threat of capture, pressure to change profit levels or sharing rule Medium risk of discretionary intervention as profits from cost-savings might be seen as excessive by the general public
Сар	 It may be exposed to gaming, incentive to inflate costs at the time the cap is set Lower threat of capture, longer regulatory period On the other hand it may be exposed to high risk of discretionary interventions as profits from cost-savings might be seen as excessive by the general public
Yardstick	 Low threat of gaming and capture, as costs are set by industry average Medium risk of discretionary interventions if industry average is perceived as inefficient Medium treat of collusion, incentive to inflate average industry costs at the time the yardstick is set

d) Impact on Investment

Rate-of-Return	 Potential of over-capitalisation / gold plating "Averch-Johnson" effect (inefficiently high capital-labour ratio)
Revenue-Sharing / Profit-Sharing	 Investment impact depends strongly on the design In general weaker (than rate-of-return regime) incentives for over- investment
Revenue-Cap	 Potential of underinvestment, however the investment impact / incentives depends strongly on the design Requires supplementary quality regulation
Price-Cap	 Potential of underinvestment, however the investment impact / incentives depends strongly on the design Requires supplementary quality regulation
Yardstick	 Potential of underinvestment, however the investment impact / incentives depends strongly on the design Requires supplementary quality regulation

3. Principle Design Criteria

e) Regulatory Risk

Rate-of-Return	 Transparent, predictable Intrusive Cost immunisation → customers bear risk → lower risk for the firm → likely lower cost of capital
Revenue-Sharing / Profit-Sharing	 Risk and revenues shared between company and customers Depending on sharing arrangements resemble rate-of-return or cap regulation
Revenue-Cap	 Due to the longer regulatory periods it may be less transparent but also less intrusive Decoupling between costs and revenue may lead to higher risk for the company
Price-Cap	 Due to the longer regulatory periods it may be less transparent but also less intrusive Decoupling between costs and revenue may lead to higher risk for the company
Yardstick	 Theoretically more transparent, but in practice several complexities Non-intrusive Owners bear risk, process similar to competitive markets

DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica

Part 2 - Role of the X-factor

Kingston, 5-6 February 2017 Dr. Viren Ajodhia Dr. Konstantin Petrov

Monopoly as a Disease

- What causes the disease?
- What are its symptoms?
- What cures are available?

Symptoms of Monopoly

- Allocative Inefficiency
- Low Productivity
- Suboptimal Quality

- High productivity implies
 - Using least amounts of inputs to produce highest level of outputs
 - Choose right combination of inputs and outputs
- Incentives under competition
 - Being more efficient than your competitors results in higher profits
- Incentives under Monopoly
 - There are no competitors
- Waste resulting from lack of productivity also known as: **X-Efficiency**

Cure: Incentive Regulation

- Formalization of the regulatory lag
- Revenue / price changes according to X-factor
- Correction for inflation and uncontrollable cost
- "Company is made claimant of residual gains resulting from better performance"
 - In normal words: If you reduce cost you make more profits, and you can keep these profits

$$p_t = p_0 \cdot (1 + CPI_t - X)^t$$

• The X-factor reflects the anticipated efficiency improvement potential of the company

Benchmarking: Identify Best Practice?

- Trade-off between rents and incentives
 - If the regulator would know the true efficiency improvement potential, it could simply set the Xfactor on this basis
 - The company would become fully efficient and all rents would be transferred to customers
- In reality, determining the true efficiency improvement potential is impossible
- The X-factor is only a (sophisticated) guess
 - Benchmarking is an important regulatory tool

Underestimation of the X-factor

DNVGL

Overestimation of the X-factor

- Decision Variable 1
 - How tight is the link between the efficiency score and the X-factor?
- Decision Variable 2
 - Do you set the X-factor before or after the regulatory period?

Price-Cap Strategies

Building Blocks versus TOTEX

- Building Blocks Approach
 - Treats opex and capex separately
 - In principle different price-cap strategies
 - Even further distinction opex/capex sub-categories
- Totex Approach
 - Makes no separation between opex and capex
 - Same price-cap strategy is applied to the sum of opex/capex
- Note: Non-controllable costs are treated as pass-through under both approaches
Building Blocks Example

DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica

Part 3 - Productivity Benchmarking Techniques

Kingston, 5-6 February 2017 Dr. Viren Ajodhia Dr. Konstantin Petrov

Why measure efficiency?

- Major Reasons
- Regulation is needed in areas where competition does not work (e.g. natural monopolies - transmission, distribution networks) to limit excessive pricing and to set incentives for efficient performance
- Regulators apply benchmarking to assess efficiency of regulated companies for the purposes of incentive regulation

Why measure efficiency?

Efficiency is measured by the ratio of output to input, usually on a comparable basis and by taking into consideration the operating environment.

Reasons for efficiency changes

- Technological change (frontier shift): change in production technology within the sector
- Efficiency change (catch-up)
 - Change in efficiency of production (technical efficiency, input prices)
 - Change in the scale of production

Benchmarking: Identify Best Practice?

Benchmarking: Identify Best Practice?

Productivity Benchmarking Techniques

Performance Indicators

- Uni-dimensional ratios compare single performance indicators
- It is simple and easily applicable
- It fails to account for the relationships between different input and output factors/ trade-offs between different improvement possibilities or areas

• Examples of performance indicators:

Productivity (Managerial) Indicators	Financial indicators
GWh / Employee OPEX / GWh OPEX / Employee GWh / Line Length	Debt / Equity Ratio Return on Investment (ROI) Return on Capital Employed (ROCE)

Productivity Benchmarking Techniques

Index Methods – Total Factor Productivity (TFP)

- Total factor productivity (TFP) measures the ratios of the inputs and outputs of a regulated company
- It can be applied with multiple inputs and outputs
- Suitable for assessment of productivity of companies or sectors over time
- Used by regulators to estimate frontier shift
- In mathematical terms based on Malmquist TFP index or Tornquist TFP index

Productivity Benchmarking Techniques

Index Methods – Total Factor Productivity (TFP)

Tornqvist Index Method

- The Tornqvist Index measures the productivity change over time
- Productivity of a company is measured by the quantity of output produced per unit of input
- In the case of a single-output and single-input this would simply be the ratio of its output and input quantities
- When multiple inputs and/or multiple outputs are involved, one should add weights of the output and input quantities

Malmqvist Method

- The Malmqvist Index is able to decompose the productivity change into relative efficiency change (firms getting closer to the frontier) and technical progress (frontier shift)
- The Malmqvist Index measures the productivity change between two data points by calculating the ratio of the distances of each data point relative to a common technology
- The Malmquist Index usually relies on DEA analysis
- In order to carry out a reliable assessment on the Malmqvist Index one would need a data set for several companies

Data Envelopment Analysis (DEA)

- Non-parametric approach based on linear programming, no functional relationships between input and output factors needed
- DEA benchmarks an individual company in relation to the best-practice (most efficient) companies, establishes peer companies
- Efficiency scores may be decomposed into scale and technical efficiency
- Small samples and a high number of input or/and output variables can result in an over-specification of the model and biased efficiency scores

Productivity Benchmarking Techniques

Data Envelopment Analysis (DEA)

Corrected Ordinary Least Squares (COLS)

- Estimation of production or cost functions (not just price relationships) via Ordinary Least Squares
- Use of regression residuals to characterise relative distances between observations in the sample
- Calculation of relative distances by means of shifting the regression line to (unique) best-practice observation
- Very dependent on data quality and, in particular, sensitive to outliers

Stochastic Frontier Analysis (SFA)

- Uses same premises as COLS, but treats best practice as a "stochastic" process (a mix of true efficiency and "pure noise" effects)
- Several statistical assumptions behind the errors' split: for instance, gamma or half-normal distribution for the efficiency errors
 - Error = U (for Inefficiency) + V (for Random Noise)
- SFA requires a large sample size to be statistically relevant
- In the presence of patchy and/or too small samples, COLS is relatively more reliable than SFA (SFA cannot be drawn as a "frontier" line as COLS)

Productivity Benchmarking Techniques

Comparison of Techniques

- Uni-dimensional is simple but does not capture the multi-dimensional nature of the business
- COLS requires assumptions on functional form but does not separate efficiency errors from random noise (fewer assumptions but less precision)
- SFA allows hypothesis-testing but requires assumptions on functional form and on distribution of efficiency errors
- DEA is distribution-free and requires no specification of functional form, however it does not allow for specification testing
- None of them is unambiguously superior to the others
- Therefore, it is good to cross-check on the main methodology wherever possible
- DEA is generally preferred by regulators though because of the lower data intensity and intuitive appeal

Benchmarking Summary

- Benchmarking is a fundamental instrument for efficiency assessment and for the establishment of productivity improvement targets
- Data quality and model specification are fundamental for successful and defensible outcomes
- Benchmarking is not perfect but can be very useful –only if applied wisely
 - Take into account data and modeling restrictions
 - Feed these constraints into the step from benchmarking to the X-factor

DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica Part 4 - Uni-dimensional and Multi-dimensional benchmarking

Kingston, 5-6 February 2017 Dr. Viren Ajodhia Dr. Konstantin Petrov

2. Methods for Efficiency Assessments

Comparison of methods

Method	Advantages	Drawbacks
Uni-Dimensional Ratios	 Simple to compute Data typically readily available Good indicative information 	 Ignores complexity and multi- dimensionality
Total Factor Productivity	 Relatively simple to compute 	 Implicit assumption is that there are no initial inefficiencies (catch-up)
Data Envelopment Analysis	 Covers multiple inputs and outputs No functional relationships required Scale effects can be incorporated Can be applied using a relatively small dataset 	 Sensitive to choice of input and output variables Influence from extreme data points
OLS / COLS	Simple to computeAccommodates multiple inputs/outputs	Requires a large data sampleInfluence from single most efficient firm
Stochastic Frontier Analysis (SFA)	Accommodates multiple inputs/outputs	 Requires a large data sample Quite complex and statistically demanding Genuine inefficiency can remain undetected
Reference Networks	 Bypasses the need for a data sample – focuses on one single company 	High data requirementsExtensive modelling required
	 Based on generally acceptable engineering assumptions 	Complex and lengthy process

The Data Envelope

DEA focuses on best performers

- DEA compares performance against "best in the class"
- Having a high efficiency score does not necessarily imply best efficiency

The DEA Linear Programme

 $\min_{\theta,\lambda} \theta$ subject to $-\mathbf{y}_{j} + \mathbf{Y} \cdot \lambda \ge 0$ $\theta \cdot \mathbf{x}_{j} - \mathbf{X} \cdot \lambda \ge 0$ $\lambda \ge 0$

- The objective function is to minimise the distance (or 'inefficiency score', θ) between the observed point (firm) and the best-practice frontier – 'put the firms under the best possible light'
- The constraints are such that all firms must be either on or within the best practice production possibilities frontier (contour)
- The input and output weights must be non-negative

DEA (simplified 2 dimensions)

DEA (simplified 2 dimensions) – CRS frontier

DEA (simplified 2 dimensions) – VRS frontier

DNV·GL

Tariff Productivity Improvement Advice for the Electricity Sector – Jamaica

Part 5 - Application of efficiency score to the revenue-cap

- Kingston, 5-6 February 2017
- **Dr. Viren Ajodhia**
- **Dr. Konstantin Petrov**

TUVol_{y-1} = {(kWh Target_{y-1} - kWh Sold_{y-1})/ kWh Target_{y-1} }*Non Fuel Rev Target for Energy Rev_{y-1+}{(kVA Target_{y-1} - kVA Sold_{y-1})/ kVA Target_{y-1} }*Non Fuel Rev Target for Demand Rev_{y-1+}{(# of Customer charges billed Target_{y-1} - # of Customer charges billed Act_{y-1})/ # of Customer charges billed Target_{y-1}}*Non Fuel Rev Target for Customer Charges Rev_{y-1}

DNVGL

X-factor can be explicit or implicit

Policy decisions in implementing productivity targets (implicit X-factor)

- The starting level of the opex
- The efficient level of this starting opex, expressed in a percentage
- The period over which this efficient level will be achieved
- Incorporate demand growth

Starting opex

- Different options are possible
- Use historic opex has risk of ratchet effect
- Option to include a one-off cut
- Multi-year average can produce more stable base

Efficient level of starting opex (long-term target)

- Opex levels should move from current levels to the perceived efficient level
- What efficient opex is, can be identified through benchmarking
- Some degree of subjectivity will play a role

Time-path for achieving long-term target

- Benchmarking helps to develop view of efficient opex, but this can only be achieved after time
- Annual opex allowances need to take this into account
- Long-term efficiency target to be achieved over predefined period
- Results in a cap on the annual X-factor

Incorporation for demand growth

- Under a revenue-cap framework, opex allowances need to incorporate expected demand growth
- To assure consistency with the revenue correction mechanism, setting of opex levels should consider the three demand types
 - Sales (kWh)
 - Demand (kW)
 - Customers
- Risk of underestimating demand growth rates as this will increase the difference between outturn and forecast demand
 - Mitigated by strict scrutiny of demand projections

For more information please free to contact:

Dr. Konstantin Petrov Managing Consultant, Market and Policy Development DNV GL - Energy

KEMA Consulting GmbH Kurt-Schumacher-Str. 8 53113 Bonn

T: +49 228 44690-58 F: +49 228 4469099 konstantin.petrov@dnvgl.com Dr. Viren Ajodhia Principal Consultant, Market and Policy Development DNV GL - Energy

KEMA Consulting GmbH Kurt-Schumacher-Str. 8 53113 Bonn

T: +597 8960 758 (Suriname) F: +49 228 4469099 virendra.ajodhia@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

